
Program Transformation - What We Didn't Know

Martin S. Feather
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive

Pasadena, CA 91 109, USA
+1818354 1194

Martin.S.Feather@Jpl.Nasa.Gov

Back in the 1970s, the early advocates of program
transformation emerged. I joined their ranks. I was inspired
by Burstall and Darlington's so-called "folding" techniques
for transformation of applicative languages. During the
1980s a small but lively community of us worked on
program transformation. Workshops and conferences took
place; working groups met; papers and books were
published; program transformation systems were
constructed. However, there were things about program
transformation we didn't know. There were things about
program transformation that we thought we knew, but
didn't.

One of the most strikingly incorrect of our expectations
concerned the uppEicution of program transformation. It
was envisioned as being used to go from extremely high-
level specification languages to extremely efficient code. It
was in competition with conventional compilation
techniques. Those techniques carefully limited the
expressiveness of their input languages so as to assure the
feasibility of (automatic) code generation. Program
transformation did not. We were confident that program
transformation could, and should, bridge a huge language
gap. One way or another, we would guide the
transformation process, and so achieve far more than could
a purely automatic compiler. Bolstered by these high
expectations, some of us became enamoured of ever-more
expressive and high-level specification languages. In our
wake we left the challenges of building transformations to
work with those languages, and controlling the lengthy
transformation process that would be needed to go all the
way from specification to code.

The more successful applications of program
transformation turned out to be those that, in some

significant and carefully chosen way, limited their
aspirations. The successes I knew best were those by Jim
Boyle, and Doug Smith.

Boyle worked with specifications in known and
straightforward languages (e.g., pure Lisp), and essentially
translated the overall behavior of those specifications into
some other language (e.g., Fortran). He would decompose
the overall translation into a sequence of small steps, so
that in the end it could be accomplished entirely
automatically. He avoided the temptation of enriching his .

input language with new constructs, but, interestingly,
would willingly introduce new constructs as intermediaries
between input and target. He avoided the temptation of
seeking to make use of every kind of optimization, but,
interestingly, would plug in the right optimization steps as
needed (e.g., to get target-machine-specific performance).
Often he would focus on a specific application, for
example, a cellular automaton used to solve partial
differential equations.

Smith worked with a very constrained set of solutions! On
each occasion, a single well-known algorithmic style would
lie at the core of his solution, e.g., divide-and-conquer. His
technique melds a problem specification with an
algorithmic specification, and the outcome is a solution to
that specification in that algorithmic style. Very elegant.
Also, very useful, as it turned out, for a whole host of real-
world problems. Scheduling-in-the-large emerged as a
fertile area for his results. What looked like such a
narrowly focused approach became much more than a
scientific curiosity. In truth, the back-end of his approach is
now supported by additional transformational activities -
data structure selection, constraint propagation, etc. I guess
I'm still surprised at how hard it really is -just how much
knowledge one really has to bring to bear - to complete the

. pathway from specification to efficient program.

In many ways, the Y2K problem is the most extreme
example of my point. It seems such a trivial problem -
adjust some old programs that use two-digit dates to instead
use four-digit dates. Hardly the grand challenge that
formed the vision for us early program transformation
advocates.

1

mailto:Martin.S.Feather@Jpl.Nasa.Gov

Another area. domain specilic languages, is a success story.
Perhaps this is one that some early visionaries did identify.
I ‘ l l leave i t t o others, more knowledgeable than I, to provide
insights into this.

What I have been observing more recently are numerous
opportunities for using modest, smallish-scale
transformation. Again, these quite don’t fit the old grand
vision. Just recently, I procedurally coded something that I
should have done in a transformational style - a translator
from constraints (input to a planner) into database queries
(input to a test tool that independently checks that
generated plans indeed meet their constraints). It was such
a modest translation problem that I didn’t think I needed to
use a transformational approach, but soon came to wish I
had! Right now I’m working with some other JPLers who
are constructing a transformation-like system. Back in the
‘80s (oops, the 1980s) I would not have guessed the wide
range of applications that we intend for this. Analysis and .
testing are major activities, so we are working on
transformation from UML state diagrams to the input to a
model checker. More traditionally, we also want to
generate executable code from those diagrams. Both these
transformation tasks should share common translation sub-
components, not only to save our development time, but,
more importantly, to ensure the analysis results correspond
to the generated code. Yet another application is to translate
to both code, and code to test that code (for people who
don’t yet fully trust our arguments as to why our
transformations are perfect).

There are other aspects of transformation unknown in the
early 1980’s but that emerged over the years to come.
Theory behind transformations (again, Smith’s work
springs to my mind in this regard). New kinds of
transformations (e.g., “finite differencing”, “memoization”,
“staging”, “filter promotion”). Techniques to support
transformation (e.g., efficient representations for
manipulation of huge programs). Obviously we didn’t
know these, but we knew that things like these would
emerge (and they should be remembered and reused, not
rediscovered). However, I stick to my point that the one big
thing I, and perhaps others, didn’t know was today’s many
and varied applications of transformation.

ACKNOWLEDGEMENTS
Some of the research described in this paper is being
carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National
Aeronautics and Space administration. Reference herein to
any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does
not constitute or imply its endorsement by the United States
Government or the Jet Propulsion Laboratory, California
Institute of Technology.

2

